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e ac vs. dc micro-grids

« Some of the issues with Edison’s dc system:
* Voltage-transformation complexities
 Incompatibility with induction (AC) motors

« Power electronics help to overcome difficulties
» Also introduces other benefits — DC micro-grids

* DC micro-grids
* Help eliminate long AC transmission and distribution paths
* Most modern loads are DC — modernized conventional loads too!
* No need for frequency and phase control — stability issues?
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e ac vs. dc micro-grids

*DC is better suited for energy storage, renewable and
alternative power sources
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 Characteristics

*DC micro-grids comprise cascade distributed power architectures
— converters act as interfaces

*Point-of-load converters present constant-power-load (CPL)
characteristics

: itv(t) <V,
i Fast output :

i NG ] P .
Vot e T 02 4,
o o)

- Line Lossless

SOURCE regulating Point-of-
: converter | load (POL)

(LRC) converter

P; = Constant

*CPLs introduce a destabilizing effect
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Simplified cascade distributed power architecture with a buck LRC. 100 190,20 #0vp 3
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 Constraints on state variables makes it extremely difficult to find a closed form
solution, but they are essential to yield the limit cycle behavior.
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* The steady state fast average model
yields some insights:
d’x, o LB, dus

LC - +x, =DE
ar e © &

%+£20

withx, >¢ and x, =C
dt x,

e Lack of resistive coefficient in first-order term
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* Unwanted dynamics introduced by the second-order term can

not be damped.

* Necessary condition for limit cycle behavior:

* Note: x;, =i, and x, = v,

dOE-v _ 1
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 Large oscillations may be observed not only when operating
converters in open loop but also when they are regulated with
most conventional controllers, such as Pl controllers.

0.355 036 Time [s] 0.365

gy

0.355 036 Time [s] 0365

Simulation results for an ideal buck converter with a Pl controller both for a 100 W
CPL (continuous trace) and a 2.25 Q) resistor (dashed trace); E=24 V, L = 0.2 mH,
PL=100W, C =470 pF.
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LRC parameters:
0 002 004 006 008 01 012 014 016 018 0.2 = OSmH’C = 1mF’D1 8 O.S,ZD2 — 054’RL = (.80

* Due to constant-power loads in micro-grids without proper controls
large oscillations and/or voltage collapse is observed
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 Passive methods — added resistive loads

i’

* Linearized equation: ° +)L(

FRNRE® B | Rl =P,
L CV}® RC RC CV’

e Conditions:

1 1 1 _ 250
<V [SRem| B <r?|-n—| P
L Ro '} Ro :ZZ
WhereRl =RSD+RD(1_D)+RL 500 002 004 006 008 01 012 014 016 018 02

1%
300 B2

* |ssue: Inefficient solution

~

Tek  .JL. : 10, MEASURE > 200

CH3 Off 150
Mean

i 100
l,l CH4 0 002 004 006 008 01 012 014 016 018 02
Mean

4 Without With 108Y 300

ot resistive MATH it
load i

250
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CH2 1Q resistor RO in kg

ﬁ /1 ¢ Mean 100
6.404
ZOXW\/\IN\‘I ."“ L para”el to CDCPL 500 002 004 006 008 01 012 014 016 018 02
CH

CH2 S5.004 M 10.0ms CH2 ./ 6.204

CH4 100V 1-Sep-030633  <l0k: E=125V,L=480uH,C =480ufF,R, =2Q,D=09,P, =43.8W
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» Passive methods — added capacitance

PL

VR

* Issues: Bulky, expensive and may reduce reliability. But may
improve fault detection and clearance

Tek J B Aut M Pos: 10.00ms MEASURE

CH3 Off
Mean

e Condition: C >

CH4
Mean
11.6Y

MATH Off
None

CH2
Mean
2.524

e e A iy T e by

CH2 5.004 M 10.0ms

E=12.5V,L =480uH,C = 480uF +200mF,
D=09,P, =35

60 mF added in parallel to Cp;
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« Passive methods — added bulk energy storage

* It can be considered an extension of the previous approach.

* Energy storage needs to be directly
connected to the main bus without
intermediate power conversion
interfaces.

* Issues: Expensive, it usually requires
a power electronic interface, batteries Time [s]
and ultracapacitors may have cell ppnt TR RS E R T
equalization problems, and reliability, [
operation and safety may be 2.
compromised.

140
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» Passive methods — load shedding

|t is also based on the condition that: C > PL

* |Issues: Not practical for critical loads

CH3 Off
Mean

AV

Mean
126V

MATH Off
None

M wmw«

CH2 S.004 M 10.0ms
CH4 10,0V 28-Aug-03 03:14 1uH

Load reduced from 49 W to 35 W

Lower CPL

Load dropped from 10 to 2 5 kW at
0.25 seconds
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* Linear Controllers - passivity-based analysis

R,C R.
 Buck converters 4@ = e(t)+ p IE e(t)+ D

i2

nonlinear inverse-square PD controllers
that can be reduced to conventional PD e e a . UE
controllers Va2

. Issues Noise sensitivit
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- Open Loop ! ch2 Wean :
" Fixed duty <+—f— Closed Loop : S
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« Geometric controllers — 15t order boundary

O Refractive

« Boundary control: state-dependent Yo 0 Reflective (stable)
switching (g = q(x))

* Linear switching surface with a
negative slope:
X = k(xz 3 xzop) + Xiop

CH2 S.00A M 5.00ms
005 01 015 02 025 03 035 04 045 05 18-May-03 1415 <10H:z
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« Geometric controllers

* First order boundary with a negative slope is valid for all types of
basic converter topologies.

Advantages: Robust, fast dynamic response, easy to implement .

; MEASURE
r O Refractive

} @ Reflective rf:_“‘_
(stable) one

O Reflective CH2
(unstable) i Mean

O Rejective ¢
CH1
None

CH1

Mean

CH4 Off
None

CH1 2.00v CH2 1.00Y =Y Mode

Push an option button to change its measurement

Example of a wrongly chosen positive slope in a boost converter
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* Most renewable and alternative sources, energy storage, and
modern loads are dc.

* Integration can be achieved through power electronics, but other
stability issues are introduced due to CPLs.

» Control-related methods appear to be a more practical solution
for CPL stabilization without reducing system efficiency.

* Nonlinear analysis is essential due to nonlinear CPL behavior.

Boundary control offers more advantages than linear controllers
and are equally simple to implement.
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